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Abstract-We consider encoding of a source with pre-specified 
second-order statistics, but otherwise arbitrary, by Entropy- 
Coded Dithered (lattice) Quantization (ECDQ) incorporating 
linear pre- and post-filters. In the design and analysis of this 
scheme we utilize the equivalent additive-noise channel model 
of the ECDQ. For Gaussian sources and square error distor- 
tion measure, the coding performance of the pre/post filtered 
ECDQ approaches the rate-distortion function, as the dimension 
of the (optimal) lattice quantizer becomes large; actually, in 
this case the proposed coding scheme simulates the optimal 
forward channel realization of the rate-distortion function. For 
non-Gaussian sources and finite-dimensional lattice quantizers, 
the coding rate exceeds the rate-distortion function by at most the 
sum of two terms: the “information divergence of the source from 
Gaussianity” and the “information divergence of the quantization 
noise from Gaussianity.” Additional bounds on the excess rate of 
the scheme from the rate distortion function are also provided. 

Index Terms- Entropy-coded dithered quantization, pre/post 
filtering, forward channel realization, divergence from Gaussian- 
ity. 

I. INTRODUCTION 
ANY coding techniques for continuous sources incor- 
porate linear operations such as sampling, filtering, 

prediction, error feedback, or spectral transformations (see, 
e.g., [ l l]  for a good survey). In this context it is usually 
assumed that some of the spectral properties of the source (e.g., 
its bandwidth) are known, and a mean-squared error (MSE) 
criterion or, more generally, a frequency-weighted squared- 
error distortion measure is used. A common justification for 
choosing the various operations that are incorporated in the 
coding process comes from a heuristic analysis, in which the 
quantization effect is assumed to be equivalent to adding an 
independent (or uncorrelated) white noise to the signal. This 
approximated model, while not accurate [lo], is very useful 
in the design of coding schemes and the analysis of their 
rate-distortion performance; see, e.g., [4], [5] ,  [191, and [12]. 

In this paper, the problem of combining optimally filter- 
ing and quantization is revisited and further analyzed in a 
different context, in which Entropy-Coded Dithered (lattice) 
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Quantization (ECDQ) is used as the basic coding component. 
An illustration of such a scheme, incorporating pre- and post- 
filters with the ECDQ is depicted in Fig. l(a), where QK is a 
lattice quantizer, E and D are a lossless encoder-decoder pair, 
and 2 is a subtractive dither. The ECDQ has been introduced 
originally as a tool for universal quantization in [26], and 
its properties were developcd further in [23] and [24]. One 
interesting property is that for the ECDQ the additive-noise 
model is accurate. In fact, the rate-distortion performance of 
the entire coding scheme of Fig. l(a) may be expressed in 
terms of information-theoretic quantities associated with the 
channel illustrated qualitatively in Fig. l(b). This channel is 
intuitively appealing, since with the appropriate filters and 
when the additive noise is Gaussian, it is the channel that 
attains the rate-distortion function of a Gaussian source [2]. 

Motivated by that, we provide a technique for encoding 
analog sources whose power spectrum is given, by a variable 
rate code. Our principal result is that the resulting coding 
scheme exceeds the rate-distortion function by at most the sum 
of two terms: the divergence of the source from Gaussianity 
and the divergence of the quantization noise from Gaussianity. 
Our work also suggests a simple analytic approach for the 
design of source coding schemes which combine filtering, 
vector quantization and lossless coding. 

In Section I1 we give a simple scalar example which 
illustrates the basic idea of the paper. Then, we show in 
Section 111 how this scheme is generalized to other cases, and 
specifically discuss its vector version. Section IV presents and 
investigates a pre/post-filtered ECDQ scheme for encoding- 
stationary time processes. Other possible implementations are 
considered in Section V. Throughout the paper we use the 
terminology and utilize results associated with ECDQ, lattice 
quantization, and quantization noise spectral shaping that have 
been obtained in our other work on the subject. The reader is 
referred to [24] and [25] for further background. 

11. A SIMPLE SCALAR EXAMPLE 
In order to motivate and demonstrate the basic idea pre- 

sented in this paper, we begin with the following simple 
scalar case. Let X be a memoryless source with mean pz and 
variance oi, to be encoded with some target distortion level 
0 < D 5 02 by a scalar ECDQ. Throughout the paper we use 
the mean-squared error (MSE) distortion measure. Consider 
the following two schemes: 

Scheme I: A direct scalar ECDQ of the source, i.e., the 
source is quantized by a dithered uniform (unbounded) scalar 
quantizer SI(.) with step size A = m, where D is the 
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Fig. 1. (a) Pre/post-filtered ECDQ and (b) its equivalent additive-noise channel. 

target distortion level, followed by lossless (“entropy”) coding. 
More specifically, let 2 N U ( - A / 2 ,  A/2), the “dither,” be a 
(pseudo) random variable uniformly distributed over the basic 
cell of Q1 and known to both transmitter and receiver. A 
dither sample is added to the source before the quantization, 
and a (uniquely decodable) binary code is assigned to the 
quantizer output. At reconstruction, the dither is subtracted 
from the decoded codeword, so that the reproduction value is 
X = Q l ( X  + 2) - 2. An efficient lossless code, conditioned 
on the dither 2, can be designed so that its average code length 
approaches the minimal possible value 

where H ( . )  denotes the entropy in bits, and p ; ( z )  = 
Pr(Ql(X + 2 )  = iA). As discussed in [23], to achieve 
the conditional entropy in practice we must discretize the 
dither, and use a different lossless codebook for each value 
of the dither. Note also that this coding rate may be achieved 
asymptotically (for a large block of source samples), even if 
the source statistics are not known, using a universal coding 
algorithm, provided that 

Following the results in [23] and [24], the above simple 
coding scheme is equivalent to the additive-noise channel 
X + X = X + N ,  where N N U ( - A / 2 ,  A/2) is independent 
of X .  The equivalence is in the sense that first, X - X is 
independent of X and is distributed as N ,  and second 

< CO [22]. 

H(Q1IZ) = I ( X ;  X + N )  (2) 

where I ( . ;  .) denotes mutual information.’ The first property 

’ A similar expression has been obtained for the coding rate (as an approx- 
imation, up to higher order terms) in classical high-resolution quantization 
theory. However, for ECDQ this expression is accurate and applies at any 
resolution of the quantizer. 

asserts that the distortion is E(X - X)2 = E N 2  = D .  As 
shown in [26], [24], and [15], for small D and “smooth” 
sources the coding rate (2) is about ( l /2 )  log 27~e/12 M 0.254 
bits higher than the rate-distortion function of the source, 
defined as [2] 

R ( D )  = inf I ( X ;  U ) .  (3) 
{ U : E ( U - X ) Z g l }  

Furthermore, for every D and all sources 

R ( D )  5 1 log ( g )  M 0.754 bits. (4) 
2 

A disadvantage of this scheme is its significant redundancy 
over the rate-distortion function in the low coding rate region. 
It requires, for example, a positive rate even for D = ( ~ 2 .  

Scheme 11: Consider now the modification of the scheme 
above shown in Fig. 2(a). Set A = as in Scheme I, and 
apply the ECDQ to the random variable a ( X  - pz), where 

D 

while pZ and a; are the source’s mean and variance, respec- 
tively. At reconstruction, multiply by ,B = a, and add the 
constant p,. This scheme depends on p, and a; which are 
assumed to be known, so it is not as universal as Scheme I. 
However, we next show that it has a smaller rate for the same 
target distortion level. 

Clearly, the subtraction and addition of p, before and after 
the encoding, respectively, is equivalent to encoding the source 
X - p,, which has a zero mean. Thus for further analysis 
we may nassume that p3: = 0, without loss of generality. 
We get X = P(Ql (aX  + 2) - Z ) ,  and an average code 
length of H ( Q l ( a X  + Z ) ( Z )  bits. Using the results of [24], 
we replace the ECDQ block in Fig. 2(a) by an additive-noise 
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Fig. 2. Scheme 11-(a) Scalar ECDQ with multiplicative factors and (b) its equivalent channel. 

channel, as shown in Fig. 2(b). Thus X - X is distributed as 
p a x  + PN - X ,  implying that the distortion of Scheme I1 is 

E(X - X)' = (pa - 1)'~: + p'- = D (6)  

as our desired target. Also, from (2), the coding rate of Scheme 
I1 is 

A2 
12 

H(Q1IZ) 1 I ( a X ;  c ~ X  + N ) .  (7) 
Observe that the mutual information in (7) is associated with 
the same additive-noise channel as the mutual information 
in (2), but the channel input in (7) is attenuated by a = 
d m  < 1. Thus the coding rate of Scheme I1 is usually 
strictly smaller than that of Scheme I.* 

This gain in coding rate is explained intuitively by the fact 
that in Scheme I1 we need effectively a smaller number of 
quantization levels, since due to the attenuation a < 1 we 
quantize the source in a coarser way. In spite of that, we still 
get the same distortion level as in Scheme I due to the post- 
filter, which effectively reduces the quantization noise power. 
Also, Scheme I1 does not suffer from the undesired property 
of Scheme I of a positive coding rate at D = a:. 

The mutual information formulas (2) and (7) for the average 
code length may be calculated for specific sources via the 
relation 

I ( X ;  x + N )  = h ( X  + N )  - h ( N )  = h ( X  + N )  - log (A) 
(8) 

'The mutual information with attenuated input is always smaller if X is 
Gaussian, since then we can write 

I ( X ;  X + N )  = h ( X  + N )  - h ( N )  

= h ( a X i +  J Z X ,  + N )  - h ( N )  

2 h ( a X i  + N )  - h ( N )  

= I ( a X ;  CUX + N )  

where X I  and X z  are independent and identically distributed as X [7, Lemma 
16.2.11. In general, however, this statement requires some regularity conditions 
on X and/or N .  

MSE [dB1 

Fig. 3. Information rates of a memoryless Gaussian source, encoded by a 
scalar ECDQ: ( A )  with filters, (B)  without filters, (C)  the source's R-D 
function. 

where h(.) denotes differential entropy, and since the p.d.f. 
of N is 

fiv(n) = l / A ,  

h ( N )  = - 

-A/2 5 n I A/2 

frv(n) log fiv(n) d n  

we have s 
Note that h ( X  + N )  exists even if X does not have a density. 
In Fig. 3 we illustrate the rates of Scheme I (see (2)) and of 
scheme I1 (see (7)) as a function of the mean-squared distortion 
D ,  in coding the Gaussian source X *  N N(0,a;).  We have 
also drawn, for comparison, the rate-distortion function of 
the source R* ( D )  = log oz /D.  As seen from the plots in 
Fig. 3, the improvement in Scheme I1 is mainly in the high 
distortiodlow rate range, while in the high-resolution extreme 
(small D )  both schemes have the same redundancy of N 0.254 
bits above the rate-distortion function. It is interesting to note 
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that in this Gaussian source example, the redundancy of the 
modified scheme is always below - 0.254 bits. 

Scheme 11, as specified by the triplet ( a ,  A, p), is actually 
the scalar version of pre/post-filtered ECDQ which is the 
subject of this paper. Theorem 1 below sheds more light on 
the general behavior of this scheme, and (as will be seen later) 
provides guidelines for the specific selection of ( a , A , p) . To 
state the theorem we need to introduce some notations. Let 
U* denote a Gaussian variable having the same mean and 
variance as the random variable U. Thus X *  N N(p,, a:) 
and N* N N(0, A2/12) are the Gaussian counterparts of the 
random variables X and N defined above. The “divergence 
of U from Gaussianity” is defined as 

D(U;  U * )  = 1% (fu(a)/fu* ( a ) )  da J 
where fu (  .) and fu* (.) are the density functions of U and 
U * ,  respectively. It is easy to verify [25], [7, p. 2341 that 

D(U;  U * )  = /z(u*) - /z(u) = 2 1og27rea; - h ( ~ )  (9) 

is the variance of U. For example, the divergence where 
from Gaussianity of the “quantization noise” N is 

1 A2 1 
2 12 2 

D ( N ; N * )  = -1og27re- -1ogA = -log ($). (10) 

If U does not have a density, then by definition V ( U ;  U * )  = 
00. 

Theorem 1 (Divergence Bound-Scalar Case}: Let 

1 
2 

R*(D)  = -log (aE/D) 

be the rate-distortion function of X *  - N(pz, a$). Let 
H(Q1IZ) be the average code length (7) of Scheme 11. Then 

H(Q1IZ) = R * ( D )  + -log 2 (E) - D ( X ; X * )  (11) 

5 R ( D )  + D ( X ;  X * )  + ; log (E) (13) 

where R(D)  is the rate-distortion function of the source 
defined in (3), and D ( X ;  X * )  is the divergence of the source 
from Gaussianity. 

For a Gaussian source, (12) asserts that the coding rate 
never exceeds the rate-distortion function by more than 2 log (27re/12) M 0.254 bits. It is further shown in Appendix 
I, that for a Gaussian source, H(Q1IZ) - R*(D) decreases 
to zero monotonically as D goes from zero to LT:. For a 
general source, it follows from (10) and (13) that the coding 
rate redundancy H ( Q I I Z )  - R ( D )  is upper-bounded by the 
sum of the divergences from Gaussianity of the source and 
the quantization noise. For example, the divergence of a 
Laplacian source from Gaussianity is M 0.104 bits, so when 
encoded by Scheme I1 the rate redundancy does not exceed 
0.104 + 0.254 M 0.36 bits for all distortion levels. 

Proof The rate of Scheme 11, given by the imutual 
information expression (7), can be written as 

H(Q1IZ) = I ( a X ;  a X  + N )  = I ( a X * ;  a X *  + N * )  
+ V ( N ;  N * )  - D ( a X  + N ;  a X *  + N * ) .  (14) 

This equality follows straightforwardly by combining (8) and 
(9). Now, since 

E(aX*  + N*)Z = E(aX + N)2 = a; 
and 

E(N*)2 = E(N)2  = D 

/ z ( ~ x *  + N * )  = - log (27reaE) 

we have 
1 
2 

and 
h(N*)  = - 1 log (27reD) 

2 

so by (8) 

Also 

D(aX + N ;  ax*  + N * )  = D ( p ( a x  + N ) ;  @(ax* + N * ) )  
= D(X;  X * )  

since the divergence does not change by applying the same 
invertible transformation to its arguments. Substituting this, 
together with (10) and (U), into (14) completes the proof of 
(1 1). 

Inequality (12) follows simply from the nonnegativity of 
the information divergence [7]. As for the last inequaility in 
the theorem, we use the Shannon lower bound for the rate- 
distortion function [2], together with (9), to write 

R ( D )  2 h ( X )  - - 1 log 27reD = - log ($) - D ( X ; X * ) .  
2 2 

(16) 

Substituting (16) in (12) results (13), and the proof is 
completed. 0 

Remarks: 
In the general case of lattice-ECDQ, it is shown in 
Section I11 that the term i log (27~e/12) above should be 
replaced by i log (27~eGk), where Gk is the normalized 
second moment of the k-dimensional lattice quantizer. 
Theorem 1 corresponds to the special case G1 = 1/12. 
Scheme I1 may also be used to encode a general station- 
ary source with power a:. It is easy to check that the 
resulting MSE is still D, as in the memoryless source 
case. Moreover, efficient entropy coding in this case will 
take into account the dependence between successive 
outputs of the scalar quantizer, and will reduce the 
coding rate beyond that predicted by Theorem 1. As 
shown in Section IV, even better results are achieved 
by replacing the scalar gains a and p in Scheme I1 by 
filters that are tuned to the source spectrum. 
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3) Theorem 1 does not reflect the fact that, similarly to the 
bound (4) for Scheme I, the redundancy above the rate- 
distortion function of Scheme I1 is upper-bounded by a 
universal constant. But, as follows from Theorem 6 in 
Section IV, the redundancy of scheme I1 also satisfies 

for all sources with E X 2  = CT;. 

111. SIMULATING THE FORWARD CHANNEL 
REALIZATION OF R* ( D )  USING THE ECDQ 

We next consider in brief the more general case of encoding 
vector sources, and later on, in section IV, we consider in detail 
encoding time processes, using ECDQ. In both more general 
cases we actually suggest to use generalized forms of Scheme 
I1 above. The main idea behind the proposed schemes is to 
simulate, by the pre/post-filtered ECDQ, the forward channel 
realization of the rate-distortion function of Gaussian sources. 

This idea has already been utilized above, in the simple 
scalar case, as follows. For a Gaussian source X* and when 
the quantization noise is Gaussian (which is the case for a 
lattice quantizer having a large dimension [25]), the coding 
rate of Scheme I1 is given by the mutual information (15) 
associated with its equivalent channel. However, this mutual 
information is equal to the rate-distortion function of X *  . Thus 
the equivalent channel shown in Fig. 2(b) becomes in this case 
the forward channel realization of the rate-distortion function 
[2, pp. 101, 1431, simulated by Scheme 11. 

All Gaussian sources have this unique property that their 
rate-distortion function, for squared-error distortion, can be 
achieved by a simple forward channel, composed of linear 
transformations (filters) and additive Gaussian noise. The 
explicit form of the transformations and the spectrum of the 
additive Gaussian noise for vector sources, and for discrete- 
and continuous-time stationary processes, can be found, e.g., 
in [2]. Thus similarly to the approach taken in the design of 
Scheme 11, these forward channels can be simulated by an 
ECDQ block with the appropriate pre- and post-filters. 

Specifically, the generalization of Scheme I1 to the case 
where a zero-mean vector source X E R” is encoded by an 
(unbounded) lattice quantizer, consists of replacing the linex 
gains a and ,# by pre-matrix A and post-matrix B, so that 
the channel 

(18) 

is a forward channel realization of the rate-distortion function 
of the zero-mean Gaussian source X *  which has the same 
covariance as the source X .  The matrices A and B, and the 
covariance matrix RN of the Gaussian vector N * ,  depend on 
the covariance matrix of the source X *  (i.e., of X )  and on 
the target distortion level D, but they are not unique. Yet, all 
triplets ( A ,  RN,  B) which realize the rate distortion function 
of X *  lead to the same output X * .  Let k ,  where 0 5 k 5 n, be 
the rank of the covariance matrix of X*  ( k  is a nonincreasing 

X *  + X *  = B(AX* + N * )  

function of 0). We can always pick a triplet (A ,  RN, B) such 
that A and B are k x n and n x k matrices, respectively, and 
RN is a k x k nonsingular m a t r i ~ . ~  

The proposed vector scheme (A ,  Qk, B) simulates a forward 
channel realization with the intermediate dimension k defined 
above. This scheme uses‘a k-dimensional lattice quantizer Qk, 
such that 

where Z is the dither vector which is uniformly distributed 
over the basic cell of Qk. Note that since RN is not singular, 
it is possible to satisfy (19) by shaping an arbitrary k -  
dimensional lattice quantizer [25]. The reconstruction of the 
vector X when coded by ( A ,  Qk, B) is thus 

while the coding rate is the conditional entropy of the quantizer 

bits per sample. 
We now state the extension of Theorem 1 to the vector case, 

for the scheme described above. But before this, we recall 
some notations. Let Gk be the normalized second moment of 
Q k  [61 

where V is the volume of the basic cell of Qk. Note that 
GI = 1/12 corresponds to the uniform scalar quantizer 
considered in the previous section. Let [2] 

1 
inf - I ( X ; U )  (21) 

= {U:(l/n)EIIU-X112<D} n 

be the rate-distortion function in bits per sample of X ,  and 
let R:(D) denote the rate-distortion function of X*. Finally, 
k t  [171, P I  

denote the divergence from Gaussianity of the vector source 
X ,  where dF(X) /dF(X*)  is the Radon-Nikodym derivative 
between the distribution functions of X and X * ,  and the two 
last equalities hold (as in (9) for the scalar case) if X has a 
density function f x ( z ) .  The vector extension of Theorem 1 
states: 

3By the “water pouring” law [2, pp. 108-1231, the rate distortion function 
of X* depends only on the IC eigenvalues of the covariance matrix of the 
source which are “above the water level.” Thus only the projection of N* on 
the corresponding IC eignvectors is effective. 
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Theorem 2 (Divergence Bound-Vector Case): The distor- 
tion of the vector coding scheme above is equal to the 
distortion associated with the forward channel realization 
(18), and its coding rate satisfies 

(23) 

Prooj? The distortion part of the theorem follows from 
the additive nature of subtractive dithered quantization [23], 
and since the mean-squared error of a linear additive-noise 
channel depends only on the second-order statistics of the 
source and the noise. The proof of the rate part (23) follows the 
steps in the proof of the scalar case (Theorem l), while noting 
that the divergence of the dither from Gaussianity satisfies [25] 

(24) 
k 

D ( 2 ;  Z * )  5 - log (2reGk). 
2 

We have omitted the details of the proof since it is analogous to 
the proof of Theorem 1, and to its process version in Theorem 
3. 0 

Equality in (24) holds if and only if (iff) the lattice quantizer 
Q k  is white [25], i.e., iff 

E { Z .  Z t }  = E . I  (25) 

where I is the identity matrix, and E is the second moment of 
Q k .  A white lattice quantizer is, in fact, a favorable choice. 
Note, first, that if the triplet (A,  R N ,  B )  composes a forward 
channel realization of R;(D), then so does the triplet 

(TA,  TRNTt,  BT-l) (26) 

for any nonsingular k x 5 matrix T.  Thus we can always 
pick a triplet with a white noise (by setting T = &R;’”), 
and simulate it using a white lattice quantizer. Furthermore, 
from [25] we know that the optimal lattice quantizer at each 
dimension, i.e., the one that minimizes Gk, is white, and it 
satisfies 

- 1 log (2reGk) = 0 (lo: ~ I C )  -+ 0, as IC -+ 00. (27) 2 

Thus by using white lattice quantizers in the vector scheme 
above, we can approach R;(D)  as closely as desired, with 
a rate of convergence in the order of lognln.  (Note that by 
(23) and (27), the redundancy term is k/n . 0 (log k / k )  5 

It is interesting to compare the behavior of the ECDQ-based 
scheme as n -+ CO with that of fixed-rate lossy source coding 
schemes. In [20], an 0(2/1*) rate of convergence to 
D*(R) ,  the inverse function of R * ( D )  = limn--roo R:(D), as 
a function of the block size n,, has been obtained for fixed-rate 
encoding of a correlated stationary Gaussian source. A similar 
result follows from [13] for memoryless (not necessarily 
Gaussian) sources. Since under some mild conditions on S, ( f )  

0 (1% 

A 

R?(D’I - R*ID) = O(l /n ) .  as n + 00 

(see [21, eqs. (38)-(40)]), it follows from (23) and (27) that 
a better rate of convergence of 0 (log n /n)  may be achieved, 
at least for Gaussian sources, using fixed to variable coding. 

We note, however, that dithered quantization corresponds to 
a random code, whose structure is randomized by the dither, 
and whose ensemble average performance (rate and distortion) 
is given in Theorem 2. In order to draw a conclusion on the 
rate of convergence for deterministic codes, it may be useful 
to consider the weighted sum 

I 

1 dR* (D) 
-H(QkIZ) n + sD,  where s = ~ dD 

which by (23) and (27) converges (vertically) to R*(D)  + SD 
as 0 (lognln). Thus for at least one dither realization, i.e., 
for one code in the ensemble, the weighted sum of the coding 
rate and the distortion converges to its minimal possible value 
as lognln.  

A few more remarks are yet in order regarding the vector 
pre/post-filtered ECDQ scheme: 

1) The reason we chose the minimal possible dimension k 
for the ECDQ in the vector scheme above is to avoid 
the extra rate that was observed in [23], and affected the 
rate in ECDQ encoding of an oversampled bandlirruted 
process. In the next section, where we deal with the (case 
of encoding a time process, this requirement is taken 
care of by sampling the pre-filtered source at exactly 
the Nyquist rate. 

2) The vector coding scheme above, which simulates the 
structure of the forward channel realization, is generally 
not the optimal linear solution, i.e., the optimal combina- 
tion of linear pre- and post-filters for a finite-dimensional 
ECDQ and a non-Gaussian s o ~ r c e . ~  For example, it 
may be seen from Fig. 3 that at high distortion, in the 
range o; /D  M 0 + 1 dB, the rate-distortion curve of the 
scheme is concave (n),5 so it may be “straightened up” 
by time-sharing. Nevertheless, in Section V we give a 
min-max argument to justify this choice of structure for 
the coding scheme. 

3) As discussed in Section V, the vector form of Theorem 
1 may also be extended to include a frequency-weighted 
squared-error distortion measure. 

Iv.  INFORMATION RATES IN CODING 
STATIONARY TIME PROCESSES 

In this section we present and analyze a specific pre/post- 
filtered ECDQ scheme for encoding a stationary bandlim- 
ited time process, which provides the most physically 
motivated example of using pre/post filters. Let X = 
{ X ( t )  , - 00 < t < CO} be a zero-mean stationary bandlimited 
source, whose (one-sided) power spectrum is S, ( f )  for f 2 0, 
and where Sz( f )  = 0 for f > B. X is to be encoded with an 

4For a given pre-filter, our proposed post-filter is optimal, since the filter 
obtaining the minimum MSE depends only on the second-order statisbics of 
the source and the quantization noise. However, the optimal pre-filter may be 
different from our pre-filter. 

5The z-axis in this figure is logarithmic. However, the curve remains 
concave even in linear scaling. 
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Before we define S* explicitly, we note that as discussed in 
Section 111, the optimal forward channel which realizes R* ( D )  
does not have a unique structure, and can be implemented by 
various choices of filters and noise spectra [2, p. 1011. The 
scheme S* we chose simulates a forward channel having an 
additive white noise. In this implementation, the source is first 
pre-filtered using a filter whose frequency response H I  ( f  ) 
satisfies 

6 

f I 9  

(32) f E BD 
otherwise 

M D  

Fig. 4. The “water pouring” law. 

average mean-squared error D. It is assumed that 

sin ~ ( 2 B t  - n)  
-CC < t < CC (28) 

n 

where X, = X(n/2B) ,  n = 0, f.1, f 2 , .  ’ .  . Assumption (28) 
means that every sample function of X is bandlimited, and 
may be interpolated from its samples taken at the Nyquist 
sampling rate 2B (this may be the case when X is the output 
of an ideal lowpass filter). We further assume that 

Sz(f) df = a; < 03. ID 
Let the rate-distortion function of this bandlimited process, 

normalized to bits per second, be [2] 

R ( D )  = 2B.  lim R,(D) 
n+cc 

where R,(D) is the rate-distortion function per sample (21), 
of the vector of Nyquist samples X = (XI, . . . , Xn). In 
accordance with the above notation, let R* ( D )  denote the rate- 
distortion function of the Gaussian process X* ( t ) ,  having the 
same power spectrum as X ( t ) .  By the “water pouring” law 
[2, pp. 108-1231 

where the “in-band” BD is defined by B o  = { f :  Sz(f) > e } ,  
the “water level” 0 is chosen to satisfy 

and where BD = ~ ( B D )  is the Lebesgue measure of the set 
BD (see Fig. 4). The mean-squared errors D, and D, are 
sometimes called the “sampling error” and the “quantization 
error,” respectively [2, p. 1431. 

From the discussion in Section I11 it follows that for each n, 
we can use the correlation function of the source to design a 
vector scheme (which combines pre- and post-matrices and an 
n-dimensional ECDQ), for coding the source block XI . . . X,. 
Let us denote this scheme by S:. The proposed coding scheme 
introduced in this section, denoted S*, may be thought of as 
the limit as n -+ 00 of S:. 

where 0 and BD are defined in (30) and (31). Then, all 
separate pieces of B o  (if any) are coupled by appropri- 
ate down-conversions to a single baseband process whose 
bandwidth is Bo. This process is sampled at exactly the 
Nyquist rate F, = ~ B D ,  to attain the discrete-time process 
X, = {X,,n,n = O,f.1,*2,. . .} . The sampled process is 
then ECDQ-encoded using a K-dimensional lattice quantizer 
Q K ,  where the dimension K is a free parameter in our analysis 
(unlike the dimension k in the vector scheme of Section 111). 
The lattice quantizer Q K  is white (see (25)), with a second 
moment 

(33) E = 0 .  BD = D,. 

The K-vectors of the dither associated with the ECDQ are 
drawn independently at each quantization stage, while the 
lossless coding is applied jointly to successive outputs of the 
quantizer. At reconstruction, the ECDQ is decoded, i.e., the 
lossless code is decoded and the dither is subtracted, to yield 
the process Xq = {X,,n, n = 0, fl, f.2,. . .}. Then, X,  is 
interpolated by an ideal discrete-to-continuous converter, the 
“pieces” of BD are placed back at their original position via 
appropriate up-conversions, and a post-filter 

H2(f) = G ( f )  (34) 

where * denotes complex conjugation, is applied to obtain 

x = { X ( t ) ,  -cc < t < CO}. 

This coding procedure is illustrated in Fig. 5. The entire linear 
transformations X -+ X, and X, -+ X are denoted LT 
and La, respectively, so S* is fully specified by the triplet 

Our first obligation is to show that the mean-squared error 
(G, Q K ,  LH). 

of S*, defined as 

E{E(t)Z} = E(X( t )  - X( t ) )Z  

is time-invariant and equals to the desired distortion D. It 
is shown in [23] that, similarly to the scalar and the vector 
cases, ECDQ encoding of a discrete-time process is equiva- 
lent to passing the source samples through an additive-noise 
channel, where the additive noise process Nq = {N,,,,  n = 
0, fl, f 2 , .  . .} is composed of i.i.d. K-blocks, each one is 
distributed as -2, and where Z is the dither vector associated 
with Q K .  Thus the entire scheme S* is equivalent to a system 
composed of the pre-processor LT , this additive-noise channel, 
and the post-processor L; in cascade. Let N ( t )  denote the 
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Fig. 5. The scheme S’. 

continuous time imput of the filter H 2 ( f )  if L; is fed by the 
discrete-time noise Nq,n defined above. From the equivalent 
system description of S*, it is easy to see that 

where Sz(f) and S,(f) are the power spectra of the source 
and the continuous-time quantization noise N ( t ) ,  respectively. 
Since the lattice quantizer is white, N ( t )  is a wide-sense- 
stationary process, whose power spectrum is 

Substituting (36) in (35) and recalling the filters definition (32), 
(34), we get E{E( t )2}  = D, + D, = D as desired. 

We now turn to the main observation of this paper, asserting 
that the rate redundancy of S* is upper-bounded by the sum of 
two terms: the divergence from Gaussianity of the source and 
the divergence from Gaussianity of the quantization noise. Let 

denote the conditional entropy rate (per sample) of the lattice 
quantizer, where Xq, l ,  Xq ,2 ,  . . . are successive K-blocks of 
X ,  (the ECDQ input), and Z1,22, . . . are the corresponding 
dither K-blocks. The existence of the limit above has been 
shown in [23]. Let RG* = F, . z(Q~(2)  denote the coding 
rate of S* in bits per second. Finally, let 

- 1 D ( X ;  X * )  = 2 B .  lim -D(X; X * )  
n+cc n 

where X = ( X l  . . .  X n )  and D ( X ; X * )  is defined in (22),  
denote the divergence from Gaussianity of X in bits per 
second.6 Similarly, 2BD . D(Nq; N,*) denotes the divergence 
from Gaussianity per second of the quantization noise process, 
which is given by BD . log ( 2 7 r e G ~ )  bits per second 1251. 

- 

6This divergence rate may also be expressed directly in terms of the 
continuous-time process X ( t )  using the “Pinsker definition” of the divergence; 
see [17, pp. 76-1101 and [9, ch. 71. 

Theorem 3 (Divergence Bound-Process Case): At all dis- 
tortion levels 

R g  (D) 5 R* (D) + BD . log (27reGK) (37) 

(38) 

where the rate-distortion functions R*(D) and R ( 0 )  are 
defined in (30) and (29), respectively. 

Pro03 Since the ECDQ is equivalent to an additive-noise 
channel, 

5 R ( D )  + D ( X ;  X * )  + BD . log ( 2 r e G ~ )  

Xq,l + NqJ,  * ’ , xq,n + Nq,“’) 

(39) 

where ?(.; .) denotes mutual information rate. Thus the coding 
rate is 

RG* = ~ B D  . f ( X q ;  X ,  + Nq)  bits per second. (40) 

Next we show that if the source and the quantization noise are 
Gaussian, the rate in (40) is equal to the rate-distortion function 
of the source. For that, we express the mutual-information rate 
I (X,*;  X,* + NQ*) by means of power spectral densities of X: 
and NQ* (see, e.g., [21 and [171), where as above we denote by 
X ;  and NQ* Gaussian processes with the same power spectrum 
as X ,  and N,, respectively. Utilizing the linear structwre of 
the pre-filter, we get 

- 

= R*(D)  (41) 

as desired. Note that (41) asserts that S* is indeed a “forward 
channel realization” of R* ( D ) .  

We now turn to consider general sources and finite- 
dimensional quantizers (non-Gaussian quantization noise). By 
expressing the mutual information rate in (39) as a difference 
between differential entropy rates (similarly to (8) ini the 
scalar case), we can write 
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where h( .) denotes differential entropy rate, e.g. holds for any source, and can be very useful for sources that 
- are far away from Gaussianity. Let 
h(N,) = n+m lim h(Nq, l , .  , Nq,n)/n.  - 

CD = ~ B D .  I(-%; x, + Nq) (47) 
Note that the decomposition in (42) always exists, since {X:E{$$ ) < D )  

be the power constraint capacity of the equivalent additive- 
noise channel. CD may be also interpreted as the maximal 
rate of S* over all inputs whose power is less than or equal to 
D .  Note that CD is a function of D ,  S,( f ) ,  and the quantizer 
Q K .  

CO > $ log (27re(a; + D p ) )  > h ( X ,  + Np) > h(N,) 
= ; l o g ( ~ / G ~ )  > -CO 

(see [25]). We may therefore follow the steps in the proof of 
Theorem 1, and use (41), (42), and the property (22), to get 

RG* ( D )  = R * ( D )  + B o .  log (27reG~)  - ZBD . D(Xq; X t )  
(43) 

Theorem 6 (Capacity Bound): For any source 

(48) R g ( D )  - R ( D )  5 Co. 

where ~ B D  . D(X,; X:)  is the divergence from Gaussianity 
per second of the ECDQ output process. 

The first bound (37) in Theorem 3 follows from (43) using 
the nonnegativity of the divergence. As for the second bound, 
we substitute in (37) the lower bound [3, Theorem 31 

R ( D )  2 R * ( D )  - B ( X ;  X * )  (44) 

on the rate-distortion function (under the mean-squared error 
criterion), and that completes the derivation of the “divergence 
bound.” 0 

The following two theorems characterize the asymptotic 
behavior of S* at the high and low distortion limits, i.e., in the 
two extremes D 4 02 and D + 0, where tighter estimates 
for the scheme’s performance can be attained. In both cases 
we scale the quantizer in order to get the desired second 
moment e ,  determined by D ,  while keeping its structure, e.g., 
its normalized second moment G K ,  fixed. 

Theorem 4 (Low Resolution): For any source 

(45) 

The proof is given in Appendix 11. Note that RZ ( D )  may 
be a discontinuous function of D for some (non-Gaussian) 
processes at D < a:. 

Theorem 5 (High Resolution): Assume that the source sat- 
isfies x ( X )  > -cc (i.e., the entropy rate of its Nyquist 
samples process exists and is finite), and SJf )  2 s, > 0 
for 0 5 f 5 B. Then 

RZ ( D )  - R ( D )  + B. log ( 2 7 r e G ~ )  as D --+ 0. (46) 

The proof of Theorem 4 is given in Appendix JII. We 
believe, actually, that the condition in Theorem 4 that S,(f) 
is bounded away from zero is not necessary, since the finite 
entropy rate condition implies 

logS,(f) > -Co. .I 
The “divergence bound” of Theorem 2 above, whose value 

is at least the rate distortion function of a Gaussian source, 
may not be tight, especially for sources with high divergence 
from Gaussianity. As shown in Theorems 4 and 5, it can be 
improved for specific distortion levels. We provide next an 
alternative universal bound on the redundancy of S*, which 

The proof is given in Appendix IV. The capacity bound 
reflects the maximal redundancy for non-Gaussian processes at 
medium distortion. As shown in the ncxt section, this bound is 
actually attained for some sources with multimodal probability 
distribution at D << a;. 

It is interesting to compare the results presented in Theorems 
4-6, to the performance of an ECDQ scheme which does not 
utilize the knowledge of the power spectrum of the source, and 
does not use pre- and post-filters. Such a scheme, which may 
be thought of as the process version of Scheme I of Section 
11, was considered in [23]. Theorem 4 implies that at the high 
distortion region, S* approaches the rate-distortion function 
for any source and any quantizer Q K .  This is in contrast with 
the high (usually the highest) redundancy at the point D = 02 
of the scheme considered in [23], which does not use filters. 
In the high-rate extreme, however, both schemes coincide, and 
Theorem 5 indeed show that S* approaches the performance 
given by [23, Theorem 41. 

Theorem 6 here parallels [23, Theorem 51, which states that 
for any source and all distortion levels the redundancy of the 
scheme without filters is upperbounded by B.log (4?reG~)  bits 
per second, i.e., B bits per second more than the redundancy at 
the high rate extreme. (This may be thought of as the process 
version of (4).) To compare this bound with our bound in 
Theorem 6 above, we write the following chain of inequalities: 

5 B . log (47reG~) (51) 

where C; is the capacity when the additive noise is Gaussian, 
i.e., when Np = N:. (For example, when S,(f) is flat over the 
source band, this capacity is given by Cg = B.log (2-D/a;) ,  
i.e., it monotonically decreases from B to zero as D goes 
from zero to a:.) The second upper bound in (49) follows 
since lHl( f ) l  5 1, and thus the capacity with H l ( f )  = 1 
for f E Bo;  which is BD ’ log(1 + D / E ) ,  upper-bounds C&. 
Inequality (50) follows since S,( f )  5 8, Vf  $! BD, implying 
D / E  5 BIBD. Finally, inequality (51) follows since BD 5 B ,  
and it becomes equality if and only if Bo = B. Thus as 
expected, pre/post-filtered quantization is universally superior 
to a scheme incorporating sampling and quantization but no 
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Fig. 6. Typical rate-distortion (R-D) curves for a non-Gaussian source. 

filters. This is true, of course, provided that the source spectral 
characteristics are available, so that the filters may be designed 
appropriately. 

To summarize the bounds derived in this section, we com- 
bine (38), (45), (46), and (51) and conclude that for non- 
Gaussian sources the redundancy in bits per sample typically 
attains its maximal value in the medium distortion region. 
Note that in any case the redundancy is upper-bounded by 
i l o g h e G ~ ,  i.e., 0.754 bit per sample for K = 1 and 0.5 
bit per sample for K -+ 00. A typical R-D curve of S* for 
a non-Gaussian “smooth’ source, as compared to R ( D )  and 
R*(D),  is depicted in Fig. 6. 

V. MODIFIED SCHEMES 
In this section we consider modifications of S*, the scheme 

considered in Section IV, which fit better the following specific 
situations. 

A. Frequency- Weighted Squared-Error Distortion Measures 

fidelity criterion of the form 
Suppose the source X ( t )  is to be encoded under a general 

/ W S E ( f )  df 5 D (52) 

where  SE(^) is the power spectrum of the error signal E( t )  = 
X ( t ) - X ( t ) ,  and where we assume that the weighting function 
L ( f )  is invertible in the source band. Note that the regular 
MSE criterion is the special case L(f)  = 1. Let W X  denote 
a source obtained by passing X through a filter W satisfying 
IW(f)lz = L ( f ) ,  and let S* be a scheme designed according 
to the previous section, to encode W X  with a mean-squared 
distortion D. It is easy to verify that (52) is satisfied if we 
apply S* to W X ,  and pass the output process through the 
inverse filter W-’ . Similarly, the rate-distortion function of 
X under the criterion (52) is given by the rate-distortion 
function of W X  under mean-squared error D; see,, e.g. [16], 
12. sec. 4 5 41- and U81 Thus Theorems 3-6 apply to the 
modified scheme under the modified distortion measure by 
substituting the power spectrum L(f)S,(f) of W X ,  instead 
of the power spectrum of X. Note that, since L ( f )  is invertible, 
the divergence from Gaussianity of W X  is the same as the 
divergence from Gaussianity of X .  

B. Partial Knowledge of the Spectrum 
In many cases the exact spectral density of the source 

might not be known (e.g., when the source is quasistationary). 
Nevertheless, as in [18], suppose we know the power of the 
source in a set of subbands I31 ...BN, where UEl Di = 
(0, B) .  A simple modification of S* may be used to encode the 
source X in this case. Let W* be a Gaussian process that has 
the same power as X in each one of the subbands, but whose 
spectral density is flat over the subbands. Let S& denote the 
pre/post-filtered ECDQ which encodes W* with distortion D. 
According to the definition in Section IV, the pre- and plost- 
filters of S& have a constant gain in each of the subbands, 
thus S& yields the same distortion D in coding the source X .  
Furthermore, a slight modification of Theorem 3 shows that 
the rate of S& in encoding X satisfies 

R F  (D) 5 R b ( D )  + BD . log (27reG~) (53) 

where R&(D) is the rate-distortion function of W* at distor- 
tion D, and BD here is the bandwidth associated with R&( 0). 
The other results of Section IV can be generalized to this (case 
in a similar manner. 

C. Subband Coding and Lattice Shaping 
The scheme S* corresponds to a direct encoding of the 

source in the time domain, using a quantizer with many (actu- 
ally infinitely many) levels. The rate reduction relies heawily 
on the fact that the quantizer is followed by a lossless encoder. 
In practice, however, linear techniques such as prediction or 
transformation are often used for data-rate reduction instead 
of (or in addition to) entropy coding. We show below that our 
scheme may be easily modified to fit these practical methods. 
The modification is based on the invariance property of the 
forward channel realization (26). Specifically, the scheme 
S = (7L1 ,  7 Q k ,  L27- l )  is equivalent to S = (L1, Q k ,  L z ) ,  
for any linear transformation 7 which is invertible with 
respect to the process L1X. The notation IQK stands for 
a quantizer obtained from Q K  by shaping according to the 
procedure described in [25] using the transformation 7. The 
resulting modified scheme and its equivalent channel are 
depicted in Fig. 7(a) and (b), respectively. Clearly, from the 
equivalent channel, the reconstructed source is unaffected by 
this transformation. Furthermore, since 7 is invertible, it is 
shown in Appendix V that 

RQ = q7x,; 7x* + I N , )  = qx,; x, + Nq)  (54) 

i.e., the coding rate is preserved as well. Note that there is an 
interesting similarity between the notion of scheme transfor- 
mation, and the general companding model suggested in [SI 
for (suboptimal) vector quantization by a lattice quantizer. 

The transformation 7 can be the Fourier transform, anid in 
this case we get an incorporation of the ECDQ in subband 
coding. In the vector case in general, the modified schleme 
corresponds to the incorporation of ECDQ in transform coding. 
If we choose I to be the appropriate whitening transformation, 
the modified scheme will correspond to predictive coding. It 
may be shown that in both cases mentioned above, the uncoded 
bit rate, i.e., the bit rate in the input of the lossless encoder, 
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Fig. 8. 
on the redundancy for K 4 00. 

A multimodal Gaussian source which achieves the capacity bound (b) 

Fig. 7. 
equivalent channel. 

(a) Linear transformation of pre/post-filtered ECDQ and (b) its 

is reduced to a value close to R * ( D )  for either a Gaussian or 
a non-Gaussian source; see [22] for the details. 

D. The Min-Max Property of S* 
As mentioned in Section 11, the forward channel configu- 

ration is not necessarily optimal among all possible ECDQ 
schemes incorporating linear filters. Nevertheless, by using 
the results of Section IV we can justify the choice of S* = 
{LT, Qm, LH}, associated with large lattice dimension, which 
has an equivalent additive white Gaussian noise channel. For 
that, we suggest a min-max argument, associated with the 
notion of robust quantization in the class of sources 

X s  = {X: X has a power spectrum Sz(f)}. (55)  

More specifically, let SD denote the set of all linear pre/post- 
filtered lattice-ECDQ schemes, i.e., the set of all triplets 
(L1 ,QK,L2) ,  having a mean-squared error D for X E X S  
(note that a linear scheme has the same error for all X E X,). 
Let RZ denote the coding rate of some S E SO. We are 
looking for that scheme in SD that minimizes the coding rate 
for the “worst source” in XS. A similar approach was taken 
in [18]. 

Since the rate of the ECDQ is equal to the mutual informa- 
tion in an additive-noise channel, this problem is equivalent 
to minimizing the capacity of an additive-noise channel un- 
der spectral constraints. Now, for a given set of spectral 
constraints, i.e., source spectrum, pre/post-filters, and noise 
spectrum, it is well known that the channel capacity is min- 
imized by a Gaussian noise, and this minimal capacity is 
achieved by a Gaussian source; see, e.g., [7, p. 2631. This 
implies that for any fixed filter and noise spectrum (associated 
with some lattice quantizer), the desirable scheme corresponds 
to K t 00, and the “worst source” is X *  E XS. Furthermore, 
given that the noise and the source are Gaussian, the minimal 
rate is, of course, the rate-distortion function R*(D) ,  which 
is actually achieved by the forward channel configuration. We 
have thus proved: 

Theorem 7: 

and the minimum, over all pre/post-filtered ECDQ schemes, 
is attained by S* = (LT,Q,,La). 

E. Nonlinear Pre/Post-Processors 

If any pre- and post-processors can be incorporated with 
the ECDQ, then clearly, due to the coding theorem, using 
sufficiently complex processors, the rate-distortion function 
can be achieved. Interestingly, it turns out that in the case 
in which the linear scheme S* suffers from the maximum re- 
dundancy, the incorporation of a simple nonlinear mechanism 
can significantly improve the performance, as shown in the 
following example. Consider an i.i.d. source which is a mixture 
of two Gaussian sources, i.e., each sample X is distributed as 

(57) 

where $*(x) = ( 1 / ~ ) e - x 2 / 2  is the standard normal density 
and p >> 1; see Fig. 8. The power of X is approximately 
pz + 1 and suppose the allowed distortion is D = 1. By the 
scalar example of Section 11, the pre- and post-filters of S* 
are the constant gains a’ = ,D2 N 1 - 1/(p2 + 1) N 1, and 
E = D = 1. Define the binary random variable V = sign ( X )  . 
It is easy to see that for Gaussian quantization noise, we get 
R$ ( D )  N_ 0.5 + H ( V )  = 1.5 bits per sample, while R ( D )  N 

H ( V )  = 1, i.e., S* has the maximal possible redundancy of 
log4reG, = 0.5 bit per sample. On the other hand, an 

almost zero redundancy can be achieved by using the simple 
scheme X = p V ,  whose rate is 1 and its MSE distortion 
is about 1. More generally, for an allowed D < 1, R ( D )  
can be approached by a simple nonlinear device in which V 
selects between two linear subsystems, each adapted to one 
of the two “modes” of X. Now, the structure suggested in 
this simple example can be applied in other “multimodal” 
examples, where an enhanced performance can be obtained by 

from a set of linear subsystems. 

x - +(d*(. - P )  + d*(. + P ) )  

utilizing a simple awitching device which dynamically selects 

APPENDIX I 
MONOTONIC BEHAVIOR OF THE 

REDUNDANCY FOR GAUSSIAN SOURCES 

In this appendix we show that for the Gaussian source X* - 
N(O,a;), the coding rate redundancy H ( Q I I Z )  - R * ( D )  is 
monotonically decreasing as D ---f a:. Using (7) and (8), the 
redundancy may be written as 

h(aX* + N )  - log A - log (az /D)  (AI) 



ZAMIR AND FEDER INFORMATION RATES OF PRE/POST-FILTERED DITHERED QUANTIZERS 1351 

where N N U(-A/2,A/2), A = m, and a = 
d m .  Define X = D/& and the random variable 
M = N / d .  Note that E { M 2 }  = a:, so its Gaussian 
counterpart M* is equal to X *  in the distribution sense. Thus 
we may rewrite (Al)  as 

H(Q1lZ) - R*(D)  = h ( A M + d T T M * )  - f log (120:) 
(A2) 

where as D goes from 0 to a;, X goes from 0 to 1. From 
[1, Lemma 11 it follows that the entropy of the weighted sum 
in (A2) is a monotonically decreasing function of A, where 
for X = 0 it is h(M*)  = flog2.irea2, while for X = 1 it is 
h ( M )  = log (A/&) = f log ( 1 2 ~ ~ 2 ) .  This proves our claim. 

APPENDIX I1 
PROOF OF THEOREM 4 (HIGH DISTORTION LIMIT) 

We distinguish between two possible cases. First we 'con- 
sider the case where Sx( f )  is unbounded, implying Q ---f 00 as 
D --f 02. Since the source power is finite 02 < CO and since 

r r 

a: = J Sx(f) df = BDde 

it follows that BD = o(l/O) 4 0 as D 4 02. Inserting 
BD + 0 into (37) we get that 

1 
lim RS* < lim R * ( D )  + lim ~ B D .  - log2.ireGk = 0 

D-U: ' - D w :  D w Z  2 

since R* ( D )  + 0 as D -+ 02.  
The second case is where S, (f) is bounded by some 

S,,, < 00, implying that 0 -+ S,,, as D -+ 02. In this 
case we first show that the signal-to-quantization-noise ratio, 
defined as SQNR = E { X ~ } / E { N ~ }  = o ~ / E ,  where 04" is the 
power of the pre-filtered source at the quantizer input, vanishes 
at high distortion: We have (32) 

and, since S, 5 S,,, and 0 -+ S,, 

We then show that SQNR + 0 implies 7 -+ 0 in the equivalent 
channel: Since the mutual information is invariant to invertible 
transformation, we may write the coding rate as 

- 1 
R g  = T ( X , ; X ,  + N,) = I ( X q ;  - ( X q  + Np) 

fi 

Now, from the assumption that the lattice quantizer is only 
scaled when D varies, the process N q / &  is independent of 
E, and thus E(Nq/&) = f log (l/Gk); see [25]. On the other 
hand, we have from (A3) and (A4) that the power of the 

process X,/& vanishes as D + 02. Thus we may apply 
[14, Corollary 31 to conclude that, since X(N,/&) > - CO 

-(" h - + -  ",) + h -  -(:), asD-+ci .  (A6) & &  
Combining (A6) with (A5) and using the fact that F, = ~ B D  

0 
As we have shown above, either the sampling rate ~ B , D  or 

the SQNR must vanish at high distortion, but not necessary 
both. For the flat spectrum source, for instance, the sampling 
rate does not vanish as D + 02.  Also, interestingly, the SQNR 
may not vanish at high distortion, for a signal with unbounded 
power spectrum. This implies that the coding rate in bits per 
sample may not vanish in the limit D + 02. For example, 
consider a bandlimited source with a "l/f" power spectral 
density S,(f) cx l/f", 0 < a < 1 at some low-frequency 
region, where 0: denotes proportion. Then for small f 

is finite for all D > 0 completes the proof. 

1 
BD = (0, BD),  0 0: -, E = BBD cx Bh-' *; 

and thus, for small D ,  SQNR = u / l  - a > 0. 

APPENDIX I11 
PROOF OF THEOREM 5 (LOW DISTORTION LIMIT) 

For D small enough we get IHl(f)I = IHz ( f ) )  = 1{0,~}, 
where l i O , ~ }  denotes an ideal low-pass filter. Now, by 1(54), 
the scheme (HI, Q K ,  H2) has the same rate distortion per- 
formance as the scheme (l{,,p], H2 . QK, l {o ,~} ) ,  where 
H2 . QK denotes a shaped lattice quantizer which is vvhite 
and has the same GK as QK; see [25]. The modified scheme 
coincides with that of [23], and hence the rest of the proof 
follows from the proof of [23, Theorem 41 (the Nyquist 
sampling rate case). 0 

APPENDIX IV 
PROOF OF THEOREM 6 (THE CAPACITY BOUND) 

The proof follows the technique used in the proof of [23, 
Theorem51. Let {Un,n  = O,z t l , f2 , . . . }  beanarbitraryran- 
dom sequence, jointly stationary with { X n ,  n = 0, f l ,  :&2}, 
the Nyquist samples of the source X ,  and statistically inde- 
pendent of the quantization noise N,. Let 

sin 4 2 B t  - n) 
- C O < ~ < C C  (A7) 

n 

and let U, = {Un,n,n = O 7 f 1 , f 2 , . . . }  be the output 
of the preprocessor LT (see Fig. 5 )  when fed by U = 
{ U ( t ) ,  -00 < t < ca}. It follows from the proof of [24, 
Theorem 21 that, for any such U and any block length m, 

I(xq; Xq + Nq) I I (Xq;  U,) + I ( X ,  - U,; Xq - U, + Nq) 

where X , ,  N,, and U ,  are n-vectors of the corresportding 
processes. Dividing by n and taking the limit, we get the isame 
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inequality for the information rates, i.e., 

- 

IL = inf I (X , ;  Uq). 
{ U :  E ( U ( t ) - X ( t ) ) 2 < D }  

In Lemma 1 below we prove that R ( D )  2 ~ B D  . IL .  
Furthermore, from (40) 

RZ* ( D )  = ~ B D  T(x,; x, 4- N,) .  

Thus by (A8) 

Rg* ( D )  - R ( D )  5 2BD . (T(Xy; X ,  + N,) - IL) 

5 ~ B D .  SUP 
{ X , U :  E ( U ( t ) - X ( t ) ) 2 < D }  

- qx, - U,; x, - U, + N,)  
= CO (A91 

where the last equality follows from the definition (47) of the 
capacity CO. (Note that X ,  - U, is the output of LT when it 

0 is fed by X ( t )  - U ( t ) . )  
Lemma I :  

- 

R ( D )  2 2 B D .  inf qxq; U,) 
{ U :E( U ( t )  - x ( t ) ) 2  < D }  

where the infimum is over processes U jointly stationary with 
X ,  and where X ,  and U, are defined above. 

Proofi Following [90, Theorem 10.6.11, the block def- 
inition (29) of R(D)  coincides with its process definition, 
i.e., 

where I(g) is the Pinsker definition of the information rate (see 
[9, pp. 135-1411). Note that by the definition of X, and U, 

E(U,  - Xn)2 = E ( X ( t )  - U@))?  

Since the processes X ,  -+ {Xn} + {U,} 4 U, form a 
Markov chain, and since the Pinsker rate satisfies the data- 
processing theorem (see [17, p. 95]), it follows that 

2B . T ( g ) ( { X n } ;  {Un})  2 ~ B D  . I ( g ) ( X q ;  U,). (A12) 

Now, similarly to the proof of [9, Theorem 10.6.11, it may 
be shown that 

i.e., that the infimum of the Pinsker rate coincides with the 
infimum of the regular mutual information rate. Combining 

0 (A1 1)-(A1 3 )  yields the proof of the lemma. 

APPENDIX V 
INVARIANCE UNDER TRANSFORMATION 

In [23] it is shown that the mutual information rate (39), 
which is the coding rate of S*, may be written also as 

- qx,; x, + N,) = T(g)(xq; x, + N,) (A14) 

where 1 ( g )  is the Pinsker rate (see above). The invariance 
property in (54) follows from the fact that the Pinsker rate 
does not change by applying an invertible transformation to 
its arguments; see [17, p. 951. Note that this statement is not 
true, in general, for the regular definition of the information 
rate. 
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